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ABSTRACT

The flutter behavior of a simple tuned rotor with a rigid and a flexible

disk is reviewed.

In Part A, the rotor assembly is assumed to consist of a rigid disk with

N uniform flexible blades attached around the circumference, so that the

blades are coupled only by aerodynamic forces. Both traveling wave and

standing wave flutter analyses are conducted, and are shown to be equivalent.

The relations between traveling and standing wave air forces are described

in detail. The standing wave analysis is shown to be more versatile for some

applications than the simpler traveling wave analysis. Applications are made

to pure bending flutter and pure torsion flutter of the rotor assembly.

Comments are made on combined bending-torsion flutter.

In Part B, the rotor disk is assumed flexible and shrouds may be present.

The blades are here coupled structurally as well as aerodynamically. The

corresponding vibration and flutter behavior is examined.
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NOMENCLATURE Cont inued
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total moment on blade
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PART A: RIGID DISK

Assume a balanced, tuned rotor with a _disk. Only aerodynamic

coupling is possible between the blades. See Fig. I. The traveling wave and

standing wave flutter behavior of the above rotor system, will be investigated

in Part A.

2. Travel;ing Wave Analysis (Simple)

The equations of motion for the tuned rotor on a rigid disk shown in

Fig. I can be represented by N = 23 identica blade equations of the form,

-- I_Z,'-" KI-

where wj represents the displacement of the jth blade at some reference

section. Because the blades are mounted in a circular ring, one looks for

travelinq wave solutions of the form,

woe (2)

where,

_11- - blade location
-- 3
N

angle of blade for n
nodal dilams



I0

hence,

N
interblade phase angle

For the physical significance of Eq. (2), one takes the real part, i.e.,

W o _ ( (__t ,e _j) (2a)

This gives the instantaneous deflection of any blade j.

The airforces corresponding to Eq. (2) are represented as,

= (A,,-LAT) Wo e (3)

These can be obtained theoretically or experimentally in cascade tunnels.

Placing the assumed solution Eq. (2) and corresponding airforces Eqs. (3) into

the basic Eq. (I) gives,

--/.J _

Real Eq.: -F.o In4 + .J_ -- AR = (2

Imag. Eq.: _3C -- A I _ O

(4)
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The airforces AR, AI are functions of reduced frequency mb/v, gap to chord

ratio s/c, interblade phase angle B, etc.

Flutter occurs when both Eqs. (4) are satisfied. Fromthe real equation,

oO --- _ AR
(4a)

Usually AR << k and hence the flutter frequency will not be altered much from

the measured natural frequency, mn" From the imaginary equation, one has the

conditions,

If, _OC_- A -- o _ Flutter, (4b)
r

If, _JC_- A_ > _ --_ Stable (4¢)

If, _0¢_ -- A I _ 0 -_ Unstable (4d)

Equation (4b)corresponds to the mechanical damping + aerodynamic damping = O,

while (4c) and (4d) correspond to the total damping being positive or negative.

All interblade phase angles B should be investigated. The values of B that

make _c - AI < 0 are considered unstable. The value of B that makes _c - AI

most negative is the flutter that will occur first. Then, the flutter mode

would be given by

n (4e)
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where n takes on integer values only. This results in a traveling wave with

n nodal diameters, which rotates at a speed m/n. " See Eq. (2a). The aerodyna-

mic coupling picks out the most unstable traveling wave mode n for the rotor

assembly.

NOTE: One can always rewrite the aerodynamic force,

"F_- (AR'-/-A_)w,, e (3)

in the form,

-- Ar
lc_ - AR W; ÷ -_- WJ (5)

since, for solutions of form, e_.L(_t . _3) one has
W_ = W o

_j = A RW o P-- -I- __ L_d'W_ e (5a)

Hence, it is seen that the damping coefficient AI/_, is the key coefficient

to be examined. Positive values of AI can lead to instability. Because of

interference from other blades, this AI can become positive and large.

For "solated blades, AI is usually negative (stable).

The type of flutter described by Eqs. (4) can be designated as, "Single

Degree of Freedom, Traveling Wave Flutter." It represents a common type of

flutter analysis for rotor blades.
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3. Traveling Wave Analysis (Alternate)

For many analyses, it is often preferable to describe the system in

terms of the 2 overall standing wave disk modes, cos Bj and sin Bj, correspond-

ing to a given number of nodal diameters n.

where,

_ J Is ----->
generalized coordinates

disk modes for nth nodal

_ _ _ _j _ diameter

N
interblade phase angle

Equation (6)is a standing wave representation of the blade motions, in

contrast to the previous traveling wave representation, Eq. (2).

To obtain modal equations for qc and qs' use Rayleigh'Ritz Method.

Kinetic energy is,

Z _--I
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where m. = m = same for all blades. Now, the following useful trigonometric
J

summations are introduced which are valid for N > 3,
1

N N

_=I $=.

m

3-'t

= 0

(7)

Using these, the kinetic energy becomes,

T -- '--M%_ + _M%
where M = mN/2. Next, the potential energy of the system is,

j=l J"-f

- '-- KI,2+- 2_ '-- W--I-,2_
where K = kN/2. The incremental work of the external forces acting on the

system is,

o_w = _ [ ,_;- ___,_ ] _'_
,,,I[ -_ !

,,j"c I

'z3

j=l
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Introducing the trigonometric summations, Eqs. (7), gives,

_ _____+]_

Placing T, U, and Qi into Lagrange's equations,

_ +

gives finally the 2 equations of motion for qc and qs defined in Eq. (6) as_

dbD

(8)

where, M = mN/2, C = cN/2, K = kN/2 represent parameters for the nth circum-

ferential mode, and B = n2_/N is the interblade phase angle.

To obtain traveling wave solutions for Eq. (8), multiply Ist equation

by cos Bk, 2nd equation by sin Bk, and add to give,

mo

M w& ÷
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Then look for traveling wave solutions of form,

W_ -- Wo P- (I0)

Corresponding air forces are represented as,

(11)

Placing Eqs. (.10) and (1!) into Eq. (9) gives,

-c_ Mwoe + I<'wo e

Introducing the previous relations of Eqs.

equation s gives,

(:7) into the R.H.S. of these

[_t

2-

Placing back into previous equations gives

7_



17

Real Eq.: -(.,,3"_ M + J< -- _ A R = 0

Imag. Eq.: 60 _ - N A_ = O
2-

(12)

These are the same equations as the previous Eqs. (4), since M = mN/2,

K = etc.

4. Relations between Traveling and Standing Waves

Given the traveling wave deflection,

VV'_ -- W_ B
= I_ 2. 3,_- -- N

(2)

which physically can be represented by its real part as,

The corresponding airforces are

,,- i, _r)Wo C

(13)

(3)

(14)
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The AR, AI are obtained from theoretical or experimental analyses of cascades

with interblade phase angles, 8.

Next, add 2 traveling waves of amplitude Wo/2, traveling in opposite

directions (+8 and -8)

(15)

The corresponding airforces f. are
J

F Co_ _3t --
t

[* 2-

-- 2_

* ]wo _LO%Ar -_

+- w__t_ ,._+_]AK ;_

- ]AR z

Gathering together gives,

(16)
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where the coefficients AI, A2, A3, A4 are related to the traveling wave co-

efficients AR and AI

4-

AS : A_-A_ A_= A_-A;
2- 2_

(17)

A sketch of the standing wave oscillation pattern is shown in Fig. 2.

Similarly, taking two traveling waves of amplitude Wo/2 traveling in

opposite directions and subtracting gives,

W_ = e)t -

t _ [c___7_;t +

ws = Wo _z_ _j _ et (18)

The corresponding airforces f. becomes,
J

m

i +

[++
2.

t Az _ ._.,_ _{
Z-.

+ ]
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Gathering together gives,

(19)

where AI, A2, A3, A4 are as defined before by Eqs. (17).

NOTE: One can rewrite Eqs. (15) and (16) as

+ A._o I
(,21)

since, for solutions of form qc = Wo cos _t, above reduce to Eqs. (15) and (_16).

Similarly, one can rewrite Eqs. (.18)and (19) as,

Wj =

4_ --
J

A3

+A__
/,o

(22)

(.23)
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since for solutions of form qs = Wo sin _t, above reduces to Eqs. (18) and

(19).

Finally, to summarize the results of this section, one can represent the

deflections and airforces in either of two forms:

(a) Travelin 9 Wave representation,

W.i -.--- _0 @ (2)

_(_t -r _j)

(b) Standin 9 Wave representation,

Wo

J

J

(24)

(25)

The standing wave coefficients AI, A2, A3, A4 are related to the traveling

wave coefficients AR and AI through Eqs. (17).
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5. Standin 9 Wave Analysis

It is of interest to apply a conventional standing wave modal analysis

to describe the instability mechanisms described previously by the travel-

ing wave analysis. To this end, one describes the blade deflection, as in

Section 3, by the two overall disk modes,

(6)

The corresponding equations of motion for the two coordinates q
C

were derived in Section 3 as,

and qs

z_

z3 (8)

th
where M, C, K, are the overall mass, damping, and stiffness of the n

circumferential disk mode, and B = n2_/N is the interblade phase angle.

The aerodynamic forces f. corresponding to the deflection pattern Eq. (6)
J

was given in Section 4 by Eq. (25). Placing this f. into Eq. (8) gives
J

ZI_-I

.i=l

_=f Co
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Making use of the trigonometric summations Eqs. (7) and noting that

M = mN/2, C = cN/2, K = kN/2 where m, c, k are the effective mass, damping

and stiffness of a single blade, the above equations reduce to,

(26)

These equations represent a familiar gyroscopical ly-coupled system. Such

equations occur for many rotating shaft and critical speed problems.

The stabil ity of these equations can be investigated in the standard

manner by looking for solutions of the form ept. The aerodynamic co-

efficients AI, A2, A3, A4 are related to the traveling wave coefficients

AR and AI through Eqs. (17), and are functions of frequency mb/V, inter-

blade phase angle 8, and other parameters. It is to be noted that A3 and

A4 are important coupling parameters in these equations. If A3 = A4 = O,

which would occur if AR = A and AI = A , the equations uncouple. Simple

standing wave solutions for qc and for qs are then possible.

The general solution of Eqs. (26) can be found by assuming qc=qc ept

and qs=q- ept. These equations then become,

A, ]p-A4. 0
(27)



24

The characteristic determinant becomes,

. (__A_)(__A,)__A_A F + _-A,)+ A. = O
(28)

One solves the above Eq. (28) for the four roots, Pi"

is present if any root Pi has a positive real part.

shape for any given root, Pi = a + impis,

Dynamic instability

The associated mode

C_--__) (_ A.)VvI_ t +- -

- A3 A4 -____z +

The corresponding deflection shape is,

(29)

For the actual physical deflection, one takes the real part of above,

where it is understood that both p and qs may be complex, i.e., the

qs -- --p = a + im and = qsR + i qsI" This will then result in the actual de-

flection shape for the jth blade as,

w_ = I
(30)
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The above response w. corresponding to the given root Pi = a + i_ indi-j

cates both traveling and standing waves are generally present in the re-

sultant motion. Note, that responses such that a = O, qSR= O, qsI = i

will represent pure undampedtraveling waves.

For finding the Flutter Speed only, rather than the general transient

response of Eqs. (26), one seeks solutions where the roots Pi are pure

imaginary, i.e., p = i_. This gives the borderline between decaying and

amplifying oscillations. In Eqs. (26) one assumes solutions of the form,

_c = Wo
L_t (31)

Placing these into Eqs. (26) gives

(32)

Dividing Eq. (.33) by i gives exactly the same equation as Eq. (32).

Hence the assumed solution form, Eqs. (31), is a solution of the Eqs. (.26)

provided the real part and imaginary parts of Eq. (32) are satisfied, i.e.,



26

-AI_

7.

Real Eq.: -_ I_I + _#_--A I --A_ _ 0

(34)

Imag. Eq.: _c _ -- As - A_ = O

This is exactly the same criterion as Eq. (4), which was found previously

by the traveling wave analysis. The corresponding deflection shape is,

Taking the real part of the above, gives the physical deflection shape as,

= Wo ( et @;)

(36)

This represents a pure traveling wave as given by Eqs. (2a) and (2).

Thus it is seen that the standing wave analysis gives the same results as

the traveling wave analysis.

The standing wave analysis, although somewhat more involved than the

simpler traveling wave analysis described earlier in Sections 2 and 3, has

certain advantages for some problems.
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(I) If 2 modesare not exactly the same (i.e., split),

b.

(37)

one will still be able to get flutter solutions, only now,

(38)

This gives combined traveling and standing wave solution_at

flutter.

(2) One can readily incorporate Forced Vibrations into these

equations as follows,

Qe YO _)

"1

(39)

where faero represent the previous aerodynamic forces which
J

depend on the blade motions qc qc' qs qs' and f_ are the dis-
, , J

turbance forces that depend on time, t. The homogeneous solu-

tion of the above equations (f_ = O) gives the previous flutter
J

solutions. The particular solution (f_ # O) gives the forced
J
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response including the aerodynamic damping from the faero. The
J

forcing function fD often arises from a steady, but non-uni-
J

formly distributed, entering flow field around the disk causing

a force

(40)

on the rotor disk stage.

relative to fixed space.

then experience a force,

m

In the above, 8 represents position

See Fig. 3. The moving jth blade would

j cln_

(41)

where ej = 2_j/N. The above could then be placed into Eqs. (39-)

to obtain the forced response of the rotor system.

(3) There is the eventual possibility of using the standing wave

analysis to include stand motion, bearing motion, shaft flexi-

bility, whirl effects, etc., _nto a combined aeroelastic and

mechanical stability analysis of the rotor system.
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6. Application to Bending Flutter

The pure bending flutter of a rotor disk will be examined, using the

simpler traveling wave theory described in Section 2. The geometrical

layout of the rotor stage is shown in Fig. 4, and the blades are assumed

to deform in pure bending motion only. The airforces will be expressed in

terms of Whitehead's 2-dimensional, incompressible cascade theory given in

Ref. 4.

The aerodynamic force per unit span on the jth blade of a cascade is

given by Whitehead as,

= rr_,Vc g_o Wo CFt c

- _ 6_ ._)Wo- mr_, (zzCF
(42)

where b = semichord, k = _b/_/ is the reduced frequency, and CFq is a

nondimensional complex coefficient depending on k, interblade phase angle

S, gap to chord ratio s/c, and stagger angle _. The total force fj,

units of pounds, acting on the jth blade, can be expressed as,

in

= £h Woe. (43)

where % is an average span of the blade, and

2h : "Lh_ " ;-£L,Z = (44)
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is a nondimensional complex coefficient expressing the lift on the blade

due to translation w0 of the blade at the 3/4 span reference location.

Comparingthe above expression for fj with the general fj given in Eq. (3),

one notes that the aerodynamic coefficients AR and AI for this problem

are,

(45)

The basic equations of motion for bending vibrations of the blades

Eq. (I), can be rewritten in the alternate form,

(.46)

where _n is the natural frequency of a blade, and _s is the critical

damping Patio of the structural vibrations. With these definitions, and

using the relations for AR and AZ given by Eqs. (45), the criterion for

instability of Eq. (4d)becomes,

(:47)

Recognizing from the real equation, Eq. (4a)that approximately _ _ _n'

the above criterion reduces to
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+ < o (48)

where one defines the important nondimensional quantities as,

_A

_n

aerodynamic
damping ratio

mass density
ratio

(49)

For instability, it is seen from Eq. (48) that the aerodynamic damping _A

must be negative. This implies that %hl must be positive. Also, it is to

be noted from Eqs. (49), that for heavy blades (_ large), the aerodynamic

damping becomes less effective than the inherent structural damping _S"

Values of %h and _A using Whitehead's theory (Ref. 4) are shown in

Table I and Fig. 5. The aerodynamic damping is plotted against increasing

reduced velocity V/_b for several interblade phase angles B and stagger

angles _ = 0 and 45°_ Since _A is always positive, pure bending flutter

cannot occur, according to 2-dimensional incompressible, cascade theory.

Table 2 shows values of %h according to TheodorsenVs 2-dimensional

incompressible, single airfoil theory, Ref. 5. The values resemble some-

what the B = 9Q ° values for the zero stagger cascade analysis. Again,

pure bending flutter cannot occur.



32

7. Application to Torsion Flutter

The pure torsion flutter of a rotor disk will also be examined using

the simpler traveling wave theory described in Section 2. The geometrical

layout of the rotor stage is shown in Fig. 6. It is assumed that the

blades have thin, symmetric sections which can pivot around the midchord.

Again, Whitehead's 2-dimensional, incompressible cascade theory Tn Ref. 4

will be used.

The aerodynamic moment per unit span about the elastic axis, acting

on the jth blade of a cascade is given by Whitehead as,

(5O)

where b = semichord, k = _b/V is the reduced frequency, and (CM )q is

a nondimensional complex coefficient depending on elastic axis location

q , reduced frequency k, interblade phase angle B, gap to chord ratio

s/c, and stagger angle _. The total moment _,

acting on the jth blade, can be expressed as,

in units of foot-pounds

7- ;.(we.
(51)

where % is in an average span of the blade, and
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h'lo," -- I_ R ÷ L rrl_z

-- [ C C!- L _._/ M_

is a nondimensional complex coefficient expressing the moment about the

elastic axis location q. For this work, the elastic axis location is

taken at the midchord q = .5, and the remaining coefficients CM , CF_ ,

CM , and CF are tabulated in Ref. 4. Comparing the above expression for
_ q q

m. with the general expression Tn the form of Eq. (3) namely,
J

,:.(_t + _5)

gives the aerodynamic coefficients AR and AI for this problem as,

7_

A R - Trs_ b÷£ m_R
(54)

The basic equations of motion for pure torsional vibrations of the

blades corresponding to Eq. (I) are,

or alternatively, these can be rewritten as,
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where _n is the torsional natural frequency of a blade, and Es is the

critical damping ratio of the structural vibrations. Using these new

definitions for torsion, and following through as in the previous bending

case in Section 6, the criterion for instability of Eq. (4d) reduces again

to,

(48)

where one now defines the important nondimensional quantities as

aerodynamic damping ratio

mass density ratio

radius of gyration ratio

(57)

Again, for instability, it is seen from Eq. (.48) that the aerodynamic

damping EA must be negative, which implies that m i

Also, it is again noted that for heavy blades (_r 2

must be positive.

large), the aerodynamic

damping becomes less effective than the inherent structural damping Es"
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Values of ms and _A using Whitehead's theory (Ref. 4) are shown Tn

Table 3 and Fig. 7 for the elastic axis at midchord (q = .5). The aero-

dynamic damping is again plotted against Tncreasing reduced velocity V/_b

for several interblade phase angles B and stagger angles _ = 0° and 45°.

It is seen a flutter Tnstability condition can occur for the staggered

cascade _ = 45° with interblade phase angles B = 90° above reduced velo-

cities V/_b = 3. However, no flutter occurs for the unstaggered _ = 0°

cascade.

Table 4 shows values of ms according to Theodorsen's 2-dimensional,

incompressibile, single airfoil theory, Ref. 5. The values resemble some-

what the B = 90° values for the zero stagger cascade analysis. No tor-

sional flutter instability occurs for these blades according to this

thoery.

8. Combined Bending-Torsion Flutter

In addition to the pure bending and pure torsion flutter considered

Tn the previous two sections, there is always the possibility, as in air-

craft wing flutter, of a coupled bending-torsion flutter of the blades.

This may arise if the center of gravity of the section does not lie on the

elastic axis, or through aerodynamic coupling between the modes. Addition-

ally, there may be structural coupling between bending and torsion through

flexible disk and shroud motions. Such structural couplings will be con-

sidered in Part B. The bending-torsion analysis here will be limited to

thin blades without shrouds, mounted on comparatively rigid disks.
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The equations of motion forbending-torsion flutter can be represented

by N = 23 identical pairs of blade equations of the form,

"" #'" ° "#_-wI'm Wj + _j -I- C w W_ ÷ W_ ---- _-

.j = I,z,.-- N

where S represents the static unbalance about the elastic axis and the

(58)

remaining quantities have been defined previously for the pure bending and

pure torsion cases. The wj and _j now represent the bending and torsion

motions of the elastic axis, and are separate degrees of freedom here.

Because the blades are mounted on a circular ring, one again looks for

traveling wave solutions of the form,

+
W 3 = W 0 _-

(59)

where w0 and _0 may be complex quantitles. Note: To obtain the physical

significance of the above vibrations, one takes the real part as in Eq. (2a),

only now since w0 and _0 may be complex, additional phasings between the

w. and _. vibrations are possrble.
J J

The airforces corresponding to the motions of Eqs. (59) about the

elastic axis location _, have been given by Whiteilead in Ref. 4 as,
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C

(60)

These represent the forces per unit span, acting on the jth blade of a

cascade for 2-Dimensional, incompressible flow. The total forces and mo-

ments, in units-of pounds and foot-pounds respectively, can be expressed as

b

b

_- #._ cKo] c

7
* i01,_ o_o|

,4

(61)

where £ is an average span of the blade and gh' %e' mh' m_ are nondimen-

sional complex coefficients which can be related to the tabulated Whitehead

coefficients by comparilng Eqs. {60) and (61). In fact, these relations

are,

_ zC C_ - -_ F_

2- [-C + _.z&_ C ] (.62)

-- 4"_" [-CM + '_ C ]

4 [C M -_C -L_&'RC +LZ,__3zCF_]_-_ ,,( F,w, M,I:
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where q defines the location of the elastic axis.

Placing the assumedsolutions Eqs. (59) and the corresponding airforces

Eqs. (61) into the equations of motion, Eqs. (58), results in two complex

homogeneousequations in w0 and s0. For non-trivial solutions of w0 and SO,

one seeks appropriate values that make the resulting complex determinant equal

to zero (both real part and imaginary part, simultaneously). This then re-

presents the flutter traveling wave solution given by Eq. (59).

Coupled bending-torsion solutions of the type described above, were

carried out extensively by Friedmannand Bendiksen in Ref. 6. These used

Whitehead's 2-Dimenslonal, incompressible cascade theory, and required

considerable numerical computation to match the required conditions and to

arrive at the minimumflutter speed, for a given configuration. Some

typical results from Ref. 6 are given in Fig. 8 showing the effects of

static unbalance on the flutter speed. Considerable reduction below the

pure torsion flutter case is possible for someconfigurations.

The coupled bending-torsion flutter described in this section can be

characterized as a "Two Degree of FreedOm, Traveling Wave Flutter".

The phase angle _ between the bending and torsion motion in Eqs. (59),

plays an important role in allowing flutter to exist. This structural

coupling angle _ is free to be determined here from the two mode analysis,

and often turns out to be in the neighborhood of 90°. The structural

coupling angle _ between the bending and torsion motions, should not be

confused with the interblade phase angle B, which remains a separate

parameter in these equations. This kind of two mode analysis is applicable

for thin blades, without shrouds, mounted on comparatively rigid disks.
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It should be mentioned that the use of Theodorsen's 2-dimensional,

incompressible, single airfoil theory, Ref. 5, will lead to flutter insta-

bility for these coupled bending-torsion cases. This is in contrast to

the pure bending and pure torsion case where flutter does not occur.

Also, it should be remarked that a limited numberof such two degree of

freedom analyses were claimed to have been performed by Whitehead in Ref.

4, and found to have little effect on the single degree of freedom calcu-

lations. The work of Friedmannand Bendiksen, Ref. 6, seemsto have ex-

plored these two degree of freedom solutions on a much larger scale, and

over a wider range of parameters.
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PART B: FLEXIBLE DISK

Assume a balanced, tuned rotor with a flexible disk. The blades

also may have shrouds connecting them. Structural coupling as well as

aerodynamic coupling exists between the blades. See Fig. 9. The vibration

modes of the overall blade-disk system will first be described, in terms

of both standing waves and traveling waves. Then, a traveling wave

flutter analysis will be performed.

9. Description of Vibration Modes

For the flexible, interconnected blade-disk assembly, one can obtain

the overall vibration, modes by a finite element analysis. There will

generally be two standing wave vibration modes ql and q2 for a given

nodal diameter n, which corresponds to sin ne and cos ne disk modes.

The basic equations for a given nodal diameter n can be written as,

For the I

u .,- ,- =

st
mode ql above, the deflection and angle at any blade j is,

W.

J

cx,i

(.63)

(64)
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where b = semichord of reference station, and ho, ac, as are nondimensional

quantities that are found from the overall vibration modesof the disk

assembly. See Fig. I0. The overall M, C, K corresponding to this mode

can also be evaluated from the standing wave, finite element vibration

analysis. It is to be noted from Eq. (64) that ql and q2 here are non-

dimensional coordinates.

In the above representation, the ac and as give howmuchthe angle at

the blade changes for a given blade deflection, bhO. For example, for a

flexible rotor with blades having their C.G. coincide with the blade

elastic axis, a flexible disk deflection of the nth circumferential mode

wD cos nO, would cause a blade deflection and twist of the form,

W -_

(65)

In the above, wD is the disk deflection at the base of the blade, and wB

and aB are additional flexible blade deflections which are excited by the

disk deflection. See Fig. II. Hence, the ho, _c' as for this case are,

b b

_r.. -" O
(66)
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If the blade C.G. does not lie on the blade elastic axis, the inertia un-

balance S_j will cause additional twists a proportional to wD cos ne, that

is, additional terms of the type, a = c I wD cos 8j, where c I is somecon-

stant. Thus, ac would then also be present in Eqs. (66). Similar rela-

tions for hO, ac, as can be obtained whenshrouds are present between the

blades. In general, the coefficients ho, ac, as are obtained from a

vibration analysis of the rotor blade-disk asembly (usually by the finite

element method).

As mentioned earlier, 2 modes are present for each frequency
n

corresponding roughly to the two disk modes sin nB and cos ng. Because of

symmetry relations, the second mode q2 nodal pattern is related to the

first mode ql' by a phase shift of 90°. See Fig. 12. Thus, for the 2nd

mode q2' one has,

(67)

Hence, in the basic modal Eqs. (63), the deflections and angles for any

blade j are,

(68)
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The corresponding generalized forces QI and Q2 for Eqs. (63) can be

obtained by considering the incremental work done _W, by the aerodynamic

forces over all the bladesp

z3

(69)

Hence, in Eqs. (63}, the generalized forces are

q, =

z_ (70)

where fj and mj are the forces and moments about the elastic axis.

Using Eqs. (631, (68), and (70), one can obtain the transient response

of a particular nodal diameter disk mode to any aerodynamic forces f. and
J

mj over the blades. These equations are comparable to Eqs. (8) and (6)
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developed earlier in Section 3. They are useful in this form to examine

the response to forcing excitation, as mentionedearlier at the end of

Section 5.

For the flutter analysis that will be presented in thenext section,

the simpler traveling wave analysis wTll be used instead of the above

standing wave modal analysis.

I0. Traveling Wave Analysis

The basic equations for vibrations in the nth nodal diameter mode were

given previously by Eqs. (63), (70) and (68) as,

.i=!

(71)

where,

To obtain traveling wave solutions, multiply the first Eqo (.71) by

bhoCOS 6k, multiply the second Eq. (71) by bhosin Bk, then add to give,

as in Section 3.
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OB

w

z_

Reca II

z_

S=I
(72)

from SectTon 5 that traveling wave solutions of the above can be

obtained from the standing wave Eqs. (68) by setting

C_'l ""-- _D e..
(73)

This would result in,

Let

w_: _,o_.____ +
,iC_,t ,- _'.&.)

= _,hoToe
(74)

The associated twist angle _k could also be put in a similar form by first

setting,

_= _o_
(75)

This would then result in

_et

(76)
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where one has defined from Eqs. (75),

(77)
0_

Note that in obtaining _ from Eqs. (77), one would have more specifically,

If o_c = +) 0(_= + ) then _ = 0 To _0 °

o o

" O(c =- O(s -_ ÷ ,,

= + o_ = _ " _ ---- 0 to -Clo°" _ c ) S )

!1 0 o

(77a)

Corresponding to the traveling wave deflections Eqs. (74) and (76), are

the traveling wave airforces given generally in Section 8 by Eqs. (61) as,

(61)

For the deflection shapes Eqs. (74) and (76), one has,

-;@
m

(78)
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Placing these into Eqs. (.61) gives the corresponding travelTng wave air-

forces as,

(79)

With these airforces, the right-hand-side of Eq. (72) becomes

Introducing the previous trigonometric relations. Eqs. (:7) for the summations

over j, that is,
Z_ Z3

2-

Z__

(7)
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The R.H.S. of Eq. (80) becomes,

R.U.S. =

(81)

R.H.5.
• [. _o-t

2-
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which eventually reduces to,

R.H.S. = -n-_,_'-l:,*£ _7_l,h° _° e_

I 2. -_¢ *_4'

(82)

Now, placing Eq. (82) together with the traveling wave deflection Eq. (74)

back into Eq. (72) gives,

_ (83)

where A is a nondimensional, complex aerodynamic coefficient defined by,

(84)

Equation (_83) reduces to the familiar real and imaginary equations as in

Eqs. (12) and (4),

Real Eq.: -_ _V_ -I- K- -_- I_

Imag. Eq.: 60 _ N2. ]I-_ _ _- AIz _- O

(85)

Further defining C and K as in Eq. (46) and introducing the mass density

ratio M, namely,
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+

M
(86)

the real equation of Eq. (85) reduces simply to,

Co -----_)_ i -

As mentioned in Section 2, usually AR/_ << I for these rotor disks and

hence approximately _ _ _n" The imaginary equation of Eq. (85) then

reduces to the simple criterion for instability,

(87)

(48)

where one defines the important nondimensional aerodynamic damping,

(88)

and A_ is the imaginary part of the nond_mensional function A given by

Eq. (84). For "nstability, it is seen from Eq. (48) that the aerodynamic

damping _A must be negative. This implies AI must be positive.

The _mportant part of the aerodynamic coefficient A for flutter con-

siderations is the imaginary part. This can be worked out from the general

expression for A in Eq. (84) to give,

As

(89)
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This agrees with the expression given by Carta in Ref. 2 except for some

sign differences due to different assumeddirections for someof the forces

and deflections. Also, this expression together with Eq. (88) reduces to

the pure bending and pure torsion criteria given previously in Eqs. (49)

and (57). It should be mentioned, that often the h0, _c' as coefficients

in Eqs. (64) are picked such that h0 = I. Then_c and _ represent thes

amount of twist present for a unit h0 blade deflection. See Eq. (64).

The type of flutter described in this section for flexible disks can

be characterized as "Single De_ree of Freedom, Travlein_ Wave Flutter",

since it involves a single unknown coordinate q0" The critical nondimen-

sional coefficient AI is a function of reduced frequency _b/V, gap to

chord ratio s/c, stagger angle _, interblade phase angle B, and structural

coupling angle 4. The latter two angles should not be confused. The

interblade phase angle B comes from aerodynamic coupling between the blades,

while the structural coup lin_ angle _ comes from the mechanical coupling

between blades. Because of the structural coupling angle 4, the _I

coefficient can become positive even without the aerodynamic coupling

between the blades. One can obtain flutter with single blade aerodynamics

such as Theodorsen's theory in Ref. 5 if _ is near an angle of about 90 °.

This type of flutter due to _ alone and B = 0, is a standing wave type

flutter.

The presence of this structural coupling angle _ is what mainly causes

the type of blade-disk-shroud flutter originally described by F. Carta in

Ref. 2. In general however, aerodynamic coupling B will also be present
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in addition to the structural coupling _. The value of B that makes the

_S + _A most negative is the flutter that would occur first. Generally

this would be for B _ 0 or B _ 180°, hence it would be a travelin_ wave

type flutter.

II. Further Remarks on Flutter

The flutter analysis for the flexible disk rotors considered in the

previous section, was essentially a single degree of freedom analysis in-

volving the single coordinate qo" In there, the flutter mode is assumed

to be identical to the vacuum vibration mode, thus fixing the structural

coupling angle _ between the bending and torsion motions to that obtained

from the vacuum vibration mode analysis. However, as was seen in Section

8, it is conceivable that under some conditions, this angle _ may be

changed by the flutter phenomenon. To allow for this possibility, one

should perform two degree of freedom, traveling wave analyses as was done

in Section 8.

To perform such a two degree of freedom analysis, one would pick two

pairs of standing wave vibration modes for the nth nodal diameter, each

pair consisting of a sin ne and cos ne disk mode. One pair would be picked

with a large blade bending contribution and the other pair with a large

blade torsion contribution. Following Eq. (68), the deflections would be,



53

o_j

(_._ _) _,

(90)

where ql' q2' _0' _c' _s are values associated with the second pair of

modes. The corresponding equations of motion following Eqs. (71) would

then be

M _. 2-

_, *¢?y,

M_ c7.. -_ ÷

]

J

)

(91)

Traveling wave solutions of these equations can be obtained from the

standing wave deflections Eqs. (90) by setting,

;.tot

L_ot: (.921
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This would result in blade deflections,

+
(93)

and similarly for _k" Then following through as in Section I0, one can

reduce the four equations of Eqs. (.91) to two equations of the form,

(94)

~ "Z(

Equations (94) above represent two simultaneous equations in the two

complex unknowns qo and _0 _ They are coupled together through the aero-

dynamic forces fj and mj on the right-hand-side since these aerodynamic

forces depend on wk and _k as indicated by Eq. (93). These equations can

be analyzed and solved in the manner indicated in Section 8 for the coupled

bending- Torsion flutter. Such two degree of freedom, traveling wave

flutter analyses for flexible rotors, represent a transition between the
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rigid disk rotor case (where the structural coupling angle _ is free to

be determined by the inertial andaerodynamic coupling, Section 8), and

the flexible disk rotor case (where the structural coupling angle _ is

assumedfixed at the vacuumfree vibration moderesult, Section I0).

It should be remarked that in the past, it has been customary to

assume_hat because of the large massdensity ratio _ of the blades and

the strong structural interconnections, the vacuumvibration modewould

not change substantially during the flutter condition. Hencethe efficacy

of the single degree of freedom, traveling wave analyses for blade-disk-

shroud flutter given in the previous Section I0, and which were originally

described by Carta in Ref. 2. Still, however, there may be situations

where a two degree of freedom, traveling wave analysis may be required.

In summary,one can identify several different types of flutter

behavior.

A_ Flutter of Blades on Rigid Disks - Here, the blades are mounted on

comparatively rigid disks, without shrouds. The structural coupling

angle from vacuum free vibration modes tends to be _ = 0° or 180°.

Single degree of freedom analyses as rn Sections 6 and 7 can show

traveling wave flutter (_ _ 0 or 180°) due to aerodynamic coupling

effects between the blades, for staggered blade cases. It is probably

good to do two degree of freedom analyses as in Section 8, since these

allow the structural coupl_ng angle _ to adjust itself to that required

by the flutter condition.
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B. Blade-Disk-Shroud Flutter - Here, the blades are mounted on flexible

disks, and may have interconnecting shrouds. The structural coupling

angle from vacuum free vibration modes tends to be _ ~ ± 90 °. Single

degree of freedom analyses as in Section I0 can show standing wave

flutter (B = 0 or 180°) due to the structural coupling angle _ even

without aerodynamic coupling effects between the blades (Theodorsen's

single airfoil theory, Ref. 5). But more likely, it will occur with

some aerodynamic coupling effects present, in which case it would

appear as a traveling wave type flutter (B _ O, 180°). Two degree of

freedom analyses, which allow adjustment of the structural coupling

away from the vacuum vibration modes value, are probably not as Tmpor-

tant here as for blades on rigid disks.

C. Stall Flutter - This involves aerodynamic coefficients that are depen-

dent on initial angle and on amplitude of vibration. Single degree of

freedom flutter analyses are generally sufficient here, as the pheno-

menon usually involves a loss of stability of the aerodynamic forces,

rather than coupling of modes. Both steady wave or traveling wave

flutter may be experienced.

The obtaining of suitable aerodynamic force coefficients for all the

different operating regimes of a rotor disk assembly, i.e., subsonic,

transonic, supersonic, etc. is a formidable task. In a more complete

study, one would try to account for three dimensional flow effects in the

rotor. Perhaps computational aerodynamic analyses could be of help here.
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Additionally, the flutter behavior of a rotor that is not completely

tuned, i.e., someblades are slightly different from others, mayalso

present some interesting local behavior, Tnstead of the uniform traveling

wave behavior discussed here. In this connectionpthe standing wave form

of flutter analysis may prove useful.

12. Conclusions

I. The flutter behavior of rotor disk assemblies with both rigid and

flexible disks is reviewed in detail.

2. The relations between traveling and standing wave analyses are des-

cribed in detial, and are shown to be equivalent.

3. The standing wave analyses are shown to be more versatile for some

applications, such as the response to forced excitation, than the

simpler traveling wave analyses.

4. The separate roles of aerodynamic coupling through interblade phase

angle B, and structural coupling through the structural coupling angle

4, are described in detail.

5. In addition to the conventional single degree of freedom traveling

wave analyses, some two degree of freedom traveling wave analyses

are reviewed and described.

6. Extensions to forced vibration problems are indicated.
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TABLEi: VALUESOF ChFROMWHITEHEADCASCADETHEORY

sic = I, _ = 0°

6

0°

90 °

180°

270 °

CFq

k = I, (% =2)

-.301 -.367 i

-.587 -.385 i

-.732 -.382 i

-.587 -,385 i

_'h

.734 - .602 i

.770 -1.174 i

.764 -1.464 i

.770"I;174 [

0 o

90°

k = .5, (_ = I)

-.303 -.183 i

-.672 -.037 i

180° -.876 +.016 i

270 ° ".672 -.037 i

k = .25, (_ = .5)

0° -.304 -.091 i

90 ° -.838 +.136 i

180° -1.096 +.167 i

270 ° ,838 +.136 i

.732 -1.21 i

.148 -2.69 i

-.064 -3,50 i

.148 "2,69 i

.728 -2.43 i

-1.088 -6.70 i

-1.336 -8.77 i

"1;088 "6;70 i

k

0° -.305 +.307 i

90° --1.022 +.125 i

180° -1.270 +.117 i

270 ° -1.022 +. 125 i

.I, (.X = .2)

-.740 -6.10 f

-2.50 -20.4 i

-2.34 -25.4 f

"2;50 "20,4 i

.... s/c =1_ _ = 45 °

.6.
CFq _h

k = I, (X = 2)

00! -.423 -.455 i

90° -.642 -.386 i

180° -.680 -.318 i

270 ° -.481 -.359 i

.910 -.846 i

.772 -1.284 i

.636 -1.360 i

.718 -.962 i

k = .5, (_ =

0° -.426 -.227 i

90°I -.782 -.124 i

180° -.846 +.035 i

270°I -.525 +,022 i

)

.908 -1.70 i

.496-3.13 i

-.140 -3.38 i

-.O88 -2.10 i

k = .25, (_ = .5)

0°! -.427 -.113 i

90°! -.930-.085 i

180°I-I.044 +. 132 i

270°i-.664 +.250 i

.904 -3.42

,680 -7.44

-1.056 -8.35

-2.OO -5.31

0°l -.427 -.045 i

90 ° -.994 -. 173 i

180° -1 167 +.081 i

,I, (_ = .2)

.900 -8.45

3.46 -19.9

-1.62 -23.3

270 ° '.842 +.313i '6;26 16;8

i

i

i

i





6O

TABLE 2: VALUES OF Ch FROM THEODORSEN SINGLE AIRFOIL THEORY

2-

k

I

.5

.25

.I

C (k)

.539 -.I00 i

.598 -.151 i

.693 -.185 i

.832 -.172 i

.800 -I.08 i

.396 -2.39 i

-.480 -5.54 i

-2.44 -16.64 i

V

•boo

I

2

4

I0
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VALUES OF me FROM WHITEHEAD CASCADE THEORY

sic = I, _ = 0°

90

180

270

B cMc,

90 -.1451-.2644 i1

180 -.2243-.3014 i

270 1451-.2644 ii

CFc 

k= ',(X: 2)

0Q .1607-.3935 i .0626 -.8602 i

.0868-.5768 i -.2679-1.2536 i

.0395-.6602 i -.4409-1.4382 i

.0868-.5768 i -.2679-1.2536 i

k : .5,(X = I)

0c-.0012-.1970 i -.2132-.4313 i

-.7073".5344

-.9522-.6159 i

-.7073-.5344 i

k = ,25,(_ = .5)

0c_.0416-,0985 i

90 i-.2255-.I079 i

180 _-.3157-.1287 i

270 !-.2255-.1079 i

-.2817-.2159 i

-,9035-,1735 i

-I.1718-.2289 i

-.9035-.1735 i

k ,,(X=

CMq

-.0544-.1854

-.1528-.2254

-.2035-.2362

-.1528-.2254

-.0548-.0926 i

-.1750-,0723 f

-.2435-.0606 i

-.1750-.0723 i

-,0550-,0463

-.2181+.0041

-.3046+.0138

-.2181+.0041

0cI-.0529-.0394

90 i-.2697-.0320 i

180 i-.3571-.0445 i

270 -.2697,.0320 i

-.3009-.0864 i

-I.0425-.0262 i

-1,2898-.0664 i

-I.0425-.0262 i

-.0550-.0185

-.2658+.0199

-.3533+.0195

-.2658+.0199

CFq

i -.3009-.3671 i

i -;5870-,3850 i

i -.7310".3817 i

i -.5870-.3850 i

-.3034-.1828

-.6722-.0372

-.8755+.0161

-.6722-.0372

i -,3042-.0913

i -.8374-.1362

i -1.0955+.1665

i -.8374-.1362

i -.3045-.0365

i -1,0215+.1250

m
o_

.510-.238 i

.751-.363 i

.858-.414 i

.751-.363 i

i 1.678" .477i

i 2.907-1.244i

i 3.480-1.449i

i 2.907-1.244i

i 6.34 -.949i

i 15.63-4.56 i

i 16.18-4.80 i

i 15.63-4.56 i

i 39.0-2.37 i

i 98.9-17.36 i

i -1,2703+.I170i 13.6-15.79 i

i -1.0215+.1250 i 98.9-17.36 i
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TABLE 3:. CONTINUED

6

s/c = I,

CMc_

= 45 °

k = ',(_. 2)

CF_

0_ .1697-.5045 i

90 .0620-.5658 i

180 .0239-.5998 i

270 .II09-.5432 i

k = .5,(X = ')

0c-.0266-.2525 i

90 -. 1599-.2764 i

180 -.2192-.2797 i

270 -. 1191-.2398 i

.0266-1.1191 i

-.2705-1.3367 i

-.4596-1.3020 i

-.2243-1.0775

0c-.0756-.1263 i

90 -.2292-.1408 i

180 -.2961-.1282 i

270 -.1968-.0866 i

-.3140-.5611 i

-.7253-.7066 i

-.9309-.5779 [

-.6193-.3617 i

k = .25,(X = .5)

-.3989-.2808 i

-.8986-.4302 i

-I. 1070-.2466 i

-.7829_-.0079 i

k=.,,(X=

CMq

-.0912-.2296 i

-.1661-.2006 i

-.1875-.2080 i

-.1218-.2309 i

-.0917-.I147 i

-.1987-.0671 i

-_2334-.0506 i

-.1404-.0731 i

-.0919-.0573 i

-.2380-.0212 i

-,2882+,0062 i

-.1813+.0110 i

• CFq

-.4234-.4547 i

-.6415-.3861 i

-.6796-.3180 i

-.4809-.3592 i

-,4261-.2267 i

-.7818-,1236 i

-.8458+.0345 i

-.5242+.0221 i

-.4269-. 1133 i

-.9300-.0842 i

-I .0444+. 1315 [

-.6638+.2492 i!

m

.617-.262 i

.759-.208 i

.819-.404 i

°687-.492 i

2.08-.522 i

3.20-.307 i

3.40-1.37 i

2.38-1.92 i

7.92-1.04 i

14.4+1.12 i

15.5-4.06 i

10.6-8.20 i

0c-.0894-,0505 i

90 -.2533-,0740 i

180 -.3244-,0484 i

270 -.2367-,0064 i

-.4226-.I123 i

-.9634-.3199 i

-I.1810-.0882 [

-.8966+,1897 ,i

-.0920-.0229 i

-.2589-.0232 i

-.3220+.0103 i

-,2274+,0395 i

-.4271-.0453 i

-.9933-.1730 i

-1.1669+.0808 i

-,8419+,3126 i

48.8-2.60 i

93.8+2449 i

105.2-12.2 i

80.0-48.2 i
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TABLE4: VALUESOFma,FROMTHEODORSENSINGLEAIRFOILTHEORY

1_= _ "_1 + I_(&)-J.I(_2._ "+ (_(_')/rZ"

I

.5

.25

C(.k)

.539 - .I00 i

.598 - .151 i

.693 - .185 i

..832 - .172 i

m V
b_

,7 4 - .331 i I

2.67 - 1.01 i 2

II.58 - 3.57 i 4

84,2 -_ 18.0 i' I0
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